
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016 1955

Counting People Crossing a Line Using Integer
Programming and Local Features
Zheng Ma, Member, IEEE, and Antoni B. Chan, Senior Member, IEEE

Abstract— We propose an integer programming method for
estimating the instantaneous count of pedestrians crossing a
line of interest (LOI) in a video sequence. Through a line
sampling process, the video is first converted into a temporal
slice image. Next, the number of people is estimated in a set
of overlapping sliding windows on the temporal slice image,
using a regression function that maps from local features to a
count. Given that the count in a sliding window is the sum of
the instantaneous counts in the corresponding time interval, an
integer programming method is proposed to recover the number
of pedestrians crossing the LOI in each frame. Integrating
over a specific time interval yields the cumulative count of
pedestrians crossing the line. Compared with current methods
for line counting, our proposed approach achieves state-of-the-art
performance on several challenging crowd video data sets.

Index Terms— Crowd counting, integer programming, local
feature.

I. INTRODUCTION

THE GOAL of crowd counting is to estimate the number
of people in a region of interest (ROI) (ROI counting)

or passing through a line of interest (LOI) (LOI counting) in
video. Crowd counting has many potential real-world applica-
tions, including surveillance (e.g., detecting abnormally large
crowds and controlling the number of people in a region),
resource management (counting the number of people entering
and exiting), and urban planning (identifying the flow rate
of people around an area). Beyond people, these counting
methods can also be applied to other objects, such as animals
passing through a particular boundary, blood cells flowing
through a blood vessel under a microscope, and the rate of
car traffic. Therefore, crowd counting is a crucial topic in
video surveillance and other related fields. However, it is still
a challenging task because of several factors: 1) in crowded
scenes, occlusion between pedestrians is common, especially
for large groups in confined areas and 2) the perspective of
the scene causes people to appear larger and move faster when
they are close to the camera. These problems are prominent
especially in oblique camera views (where the camera looks
down at an angle), which are typical of outdoor surveillance
cameras.

Manuscript received May 1, 2015; revised July 23, 2015; accepted
September 29, 2015. Date of publication October 9, 2015; date of current
version September 30, 2016. This work was supported by the Research
Grants Council, China, under Grant CityU 110610 and Grant CityU 123212.
This paper was recommended by Associate Editor J. M. Martinez.

The authors are with the City University of Hong Kong, Hong Kong (e-mail:
mazheng1985@gmail.com; abchan@cityu.edu.hk).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2015.2489418

Fig. 1. Line-counting example. (a) Crowd scene and LOI. (b) Temporal
slice of the scene. (c) Flow-mosaicking [1] result where a large blob leads
to a big jump in the cumulative count. In contrast, our method can predict
instantaneous counts better, yielding better cumulative predictions.

Most previous approaches [2]–[6] focus on solving the
ROI counting problem and are based on the counting-by-
regression framework, where features extracted from the ROI
are directly regressed to the number of people. By bypassing
intermediate steps, such as people detection, which can be
error prone on large crowds with severe occlusion, these
counting-by-regression methods achieve accurate counts even
on sizable crowds. In this paper, we focus on LOI counting,
where the goal is to count the number of people crossing a
line (or visual gate) in the video [see Fig. 1(a)]. In particular,
the aim is to estimate both the cumulative count, i.e., the total
count since the start of the video and the instantaneous count,
i.e., the count at any particular time or short temporal window.
The instantaneous count is similar to detecting when a person
crosses the line. A naive approach to LOI counting is to apply
ROI counting on the regions on each side of the LOI and take
the count difference. However, this LOI count will have errors
when people enter and exit the ROIs at the same time, since
the number of people in the regions remains the same.

Current LOI counting approaches [1] are based on extract-
ing and counting crowd blobs from a temporal slice of the
video (e.g., the y-t slice of the video volume). However, there
are several drawbacks of these blob-centric methods.

1) Because the blob is not counted until it has completely
crossed the line, large blobs (e.g., containing more
than 10 people) yield big jumps in the cumulative
count, which leads to poor instantaneous count estimates
[see Fig. 1(c)].

2) The counts in these large blobs are not accurate due to
severe occlusions [1].

1051-8215 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1956 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016

Fig. 2. Results of instantaneous count estimation on (a) UCSD and (b) LHI data sets. The image is a temporal slice of the video on the LOI. The red and
green segments correspond to crowds moving in different directions, and the instantaneous count estimates appear above and below the image.

3) Evaluation methods for blob-based methods are based
on the ground-truth people in the blob, not the actual
people passing the line—hence, it is difficult to assess
errors due to segmentation failure of the blob.

Moreover, these methods typically require spatiotemporal (ST)
normalization to handle the differences in pedestrian size due
to the camera perspective and pedestrian velocity. Current
perspective normalization methods [2], [7] require marking
a reference person in different positions in the video. For
arbitrary videos (e.g., from the Internet), these normalization
techniques cannot be applied if no suitable reference exists.

To address the above problems, we propose a novel
line-counting algorithm that estimates instantaneous people
counts using local-level features and regression without per-
spective normalization (see Fig. 2). The contributions of this
paper are threefold. First, to overcome the drawbacks of
blob-centric methods, we propose an integer programming
approach to estimate the instantaneous counts on the LOI,
from a set of ROI counts in the temporal slice image. The
cumulative counts of our method are smoother and more
accurate than blob-centric methods. Second, we introduce a
local histogram-of-oriented-gradients (LHOG) feature, which
is robust to the effects of perspective and velocity and
yields accurate counts even without ST normalization. Third,
we experimentally demonstrate that our method can achieve
state-of-the-art results for both cumulative and instantaneous
LOI counts on three challenging data sets.

The remainder of this paper is organized as follows.
Section II reviews related work in ROI and LOI counting.
The line-counting framework based on integer programming
is proposed in Section III. Section IV presents the experimental
results of our LOI counting framework on synthetic counting
data, while Section V validates our framework on three
challenging data sets. Finally, Section VI presents detailed
experiments on various components of the framework.

II. RELATED WORK

Counting-by-regression methods focus on either counting
people in an ROI or counting people passing through an LOI.
For ROI counting, features are extracted from each crowd

segment in an image, and a regression function maps between
the feature space and the number of people in the segment.
Typically low-level global features are extracted from the
crowd segment, internal edges, and textures [1], [2], [4], [6].
The segment area is a prototypical feature that can indicate
the total number of pedestrians in the segment. Reference [2]
shows that there is a near linear relationship between the
segment area and the number of pedestrian, as long as
the feature extraction process properly weights each pixel
according to the perspective of the scene. Low-level features
can also be extracted from each crowd blob, i.e., an indi-
vidually connected component in the segment, which con-
tains several pedestrians [5], [6]. Regression methods include
Gaussian process regression (GPR) [8] or Bayesian Poisson
regression (BPR) [4], which are both kernel methods that
can estimate nonlinear functions. Reference [9] introduces a
cumulative attribute space for learning a regression model on
sparse and imbalanced data. Under the assumption that the
source and target data share a similar manifold representation,
[10] demonstrates that the lack of labeled data in a new scene
can be helped by transferring knowledge from other scenes,
thus minimizing the effort required for crowd counting in the
new scene. Reference [11] proposes an alternative approach
to ROI counting using pixel-wise density learning. The crowd
density at each pixel is regressed from the feature vector, and
the number of pedestrians in an ROI is obtained by integrating
over a region. ST group context has also been considered
in [12] to further improve the counting performance.

LOI counting estimates the number of people in a temporal
slice image (e.g., the y-t slice of the video volume), the result
of which represents the number of people passing through
the line within that time window. However, with the basic
temporal slice, people moving fast will have fewer pixels
than those moving slowly, thus confounding the regression
function. Flow mosaicking [1] corrects for this by changing
the thickness of the line based on the average velocity of the
pixels in the crowd blob, resulting in a flow mosaic. The
perspective normalization of [7] is used, and the count in
each blob is estimated from low-level features. The blob count
can only be estimated after the blob has passed the line,

MA AND CHAN: COUNTING PEOPLE CROSSING A LINE USING INTEGER PROGRAMMING AND LOCAL FEATURES 1957

Fig. 3. Proposed line-counting framework. A temporal slice image is formed by sampling on the LOI in a video. Features are extracted from a temporal
sliding window, and the number of people in each TROI is estimated using regression. The instantaneous counts on the line are recovered from the TROI counts
using integer programming. Finally, the cumulative count is obtained by integrating the instantaneous counts.

and hence large jumps in the cumulative count can occur
and instantaneous counts (indicating when each person passes
the line) are not possible. In contrast to flow mosaicking [1],
our proposed approach performs ROI counting on windows
in the temporal slice image and uses integer programming to
recover the instantaneous count on the line. In addition, flow
mosaicking [1] performs temporal normalization by sampling
the LOI using a variable-width line. Because the same line-
width must be applied to the whole blob, blobs containing
both fast and slow people will not be normalized correctly.
In contrast, we use a fixed-width line and do per-pixel temporal
normalization, which can better handle large crowd blobs with
people moving at different speeds.

Finally, counting can also be performed using people detec-
tion methods [13]–[15], which are based on individual-centric
features, i.e., features describing the whole person, such as the
histogram-of-oriented-gradients (HOG) descriptor of a whole
person [13]. The deformable part-based model (DPM) [15]
also builds an HOG descriptor of a whole person, using a
more flexible layout model for the spatial relationship between
HOG parts at different scales. While this results in a model
that is better adapted to varying poses of a single person, it
can have problems in detecting partially occluded people in
groups. In contrast, by removing the layout model, our local
HOG representation is better able to handle occlusions.

Visual tracking can also be used for LOI counting. In
[16], Kanade-Lucas-Tomasi Feature Tracker (KLT) tracker is
used to estimate the tracklets of pedestrians for further crowd
behavior analysis. However, the tracking trajectories become
noisy and disconnected when the occlusion is high as in
crowded scenes (e.g., Grand Central Station).

A preliminary version of our work was first presented
in [17]. This paper contains additional improvements in the
LOI counting framework and significantly more experimental
results:

1) new L1-norm objective function for LOI counting,
which improves the processing speed at the cost of a
small drop in accuracy for high-density crowds;

2) instead of using one fixed-size ROI temporal window,
a new scheme to use multiple window sizes that can
improve counting accuracy;

3) new experiments on a synthetic data set, which shows
how LOI counting accuracy is affected by crowd density
and noisy ROI counts;

4) new large experiment on the Grand Central data set
(8000 video frames and eight counting lines);

5) comparisons with other methods of counting, such as
DPM pedestrian detection and KLT tracking;

6) in-depth experiments testing different configurations of
each component of the framework.

III. LINE-COUNTING FRAMEWORK

In this section, we introduce our line-counting framework,
which is shown in Fig. 3. Given an input video sequence,
the video is first segmented into crowds of interest,
e.g., corresponding to people moving in different directions.
A temporal slice image and temporal slice segmentation are
formed by sampling the LOI over time. Next, a sliding window
is placed over the temporal slice, forming a set of temporal
ROIs (TROIs). Features are extracted from each TROI and
the number of people in each TROI is estimated using a
regression function. Finally, an integer programming approach
is used to recover the instantaneous count from the set of
TROI counts. The cumulative counts are obtained by summing
the instantaneous count over time.

A. Crowd Segmentation

Motion segmentation is first applied to the video to
focus the counting algorithm on different crowds of interest
(e.g., moving in opposite directions). We use a motion
model [18] of a mixture of dynamic textures to extract the
regions with different crowd flows. The video is divided
into a set of ST video cubes, from which a mixture of
dynamic textures is learned using the Expectation–Maximiza-
tion algorithm [18]. The motion segmentation is then formed
by assigning video patches to the most likely dynamic texture
component. Static or very slow moving pedestrians will not
be included in the motion segmentation, which is desirable,
since the counting algorithm should ignore people who have
stopped on the line, in order to avoid double counting.

B. Line Sampling and Temporal ROI

We use line sampling with a fixed line-width to obtain the
temporal slice image. As shown in Fig. 3, the input video
image and its corresponding segmentation are sampled at the
LOI in each frame. Formally, let It be the video frame at
time t , and It (x, y) be the pixel value at location (x, y). The
LOI is defined by the y-coordinates of its lower and upper

1958 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016

TABLE I

ST NORMALIZATION FOR LOW-LEVEL FEATURES

extents {ylo, yhi } and its x-coordinate xL . The sampled image
slice at time t is the vector

St = [It (xL, ylo), It (xL, ylo + 1), . . . , It (xL, yhi)]T . (1)

The sampled image slices are collected to form the temporal
slice image, where each column in the slice image corresponds
to the LOI at a given time, S = [S1, S2, . . . , SM], where M is
the number of frames. Similarly, the corresponding frames in
the segmentation are sampled on the LOI to form the temporal
slice segmentation. To obtain the TROIs, a sliding window of
length L is moved horizontally across the slice image, using
a step size of one pixel

TROIi = [Si , Si+1, . . . , Si+L−1], 1 ≤ i ≤ M − L + 1. (2)

For nonvertical LOIs, we first rotate the input image so that
the LOI will be vertical and then perform the line sampling.
This removes artifacts in the temporal slice images that are
caused when sampling along a pixelated diagonal line.

C. Feature Extraction

Features are extracted from each crowd segment in each
TROI. We consider both low-level global and local features.

1) Global Features: We use the 30 global features
from [3], which achieved good performance for ROI counting.
These features measure various properties of the segment
and its internal edges and texture (see Table I).
Chan and Vasconcelos [3] demonstrated that there is an
almost linear relationship between the number of people and
the features like the area of the crowd segment and the length
of its internal edges, assuming proper normalization. Local
nonlinearities can be modeled with texture features.

2) Local HOG Features: Fig. 4(a) shows an example of a
temporal slice image with a crowd walking in two directions.
Due to the camera tilt angle, which is nearly 45°, the occlusion
of pedestrians is heavy, with torsos or legs not visible in many
cases. Rather than using the standard HOGs [13], which is a
descriptor of a whole person, we consider a smaller LHOG
descriptor that can represent parts of the person independently.
As a result, in crowded scenes, meaningful descriptors can still
be extracted from partially occluded people.

An LHOG descriptor is calculated from a gray-level square
image patch and consists of one block of the standard HOG

Fig. 4. Example LHOG. (a) Temporal slice image. (b) Image patches.
(c) LHOG features. (d) One bin of the BoW histogram versus crowd size.

feature composed of four spatial cells.1 In each spatial cell,
the orientation of the gradient is evenly divided into 9 bins
over 0–180° (with unsigned gradient), and the gradient mag-
nitudes are then accumulated into their respective orientation
bins, resulting in a 36-D feature (4 cells × 9 bins).2 Fig. 4(c)
presents examples of the LHOG features representing the
head–shoulders, side, or legs and feet of people in a crowd
[patches in Fig. 4(b)].

For each TROI and crowd segment, a set of LHOGs
is densely extracted and then summarized into a single
feature vector using the bag-of-words (BoW) model. The BoW
codewords are the cluster centers resulting from K-means
clustering of the LHOGs extracted from the training set. For
a given crowd segment, LHOGs are assigned to the closest
codewords according to Euclidean distance, and the feature
vector is a histogram where each bin represents the number
of times an LHOG codeword appears in the crowd segment.

As an example, Fig. 4(d) plots the value of one bin of
the histogram versus the number of people in the crowd
segment. The bin value varies linearly with the number of
people, which suggests that the bag of words of the LHOG
can be a suitable feature for crowd counting. Finally, we do not
apply histogram normalization methods (e.g., TF and TF-IDF).
Normalization will obfuscate the absolute number of code-
words in the segment, making histograms from large crowds
similar to those from small crowds, which confounds the
regression function.

D. Spatiotemporal Normalization

Because the temporal slice image is generated using a fixed-
width line, the width of a person will change with its velocity.
In particular, people moving slowly across the LOI will appear
wider than those moving fast [see Fig. 5(a)]. Hence, temporal
normalization is required during feature extraction to adjust for
the speed of the person. A temporal weight map wv(x, y) is
formed from the tangent velocity of each LOI pixel, estimated
with optical flow3 [20] [see Fig. 6(b)]. Faster moving people

1We also considered rectangular image patches (e.g., 8×16) and found that
the 8 × 8 image patches yield the best performance in the experiments.

2We considered weighting the gradient magnitudes using a spatial Gaussian
kernel (similar to scale-invariant feature transform [19]), but this did not
improve the counting accuracy.

3The optical flow on the LOI is computed from two adjacent video frames.

MA AND CHAN: COUNTING PEOPLE CROSSING A LINE USING INTEGER PROGRAMMING AND LOCAL FEATURES 1959

Fig. 5. Temporal slices of pedestrians with different velocities. (a) Slow
people (left) have a wide appearance, while fast people (right) have a thin
appearance. (b) Tangent velocity of crowd moving though the LOI. The cold
colors represent slow people, while the warm colors indicate fast people.

Fig. 6. (a) Temporal slice image. (b) Temporal and (c) spatial weighting
maps.

have higher weights, since their features will be present for less
time. In addition to the temporal normalization, the features
must also be normalized to adjust for perspective effects of
the angled camera. We follow [2] to generate the spatial
perspective weight map wp(x, y) [see Fig. 6(c)].

Both weighting maps are applied when extracting low-
level features from the image, yielding an ST normalization,
summarized in Table I. Specifically, for the area feature,
each pixel is weighted by wpwv, and for edge and texture
features, the weighting of

√
wpwv is applied on each pixel.

The edge and perimeter orientation features are sensitive to
a particular edge angle θ ∈ {0°, 30°, 60°, 90°, 120°, 150°},
and hence a weight of (w2

p cos2 θ + w2
v sin2 θ)1/2 is used to

readjust the contributions between wv and wp . For example, for
a horizontal edge (90°), only the temporal weight is applied,
since there is no component of the edge in the spatial direction.

To normalize LHOG, at each location in the image, we
change the size of the image patch by scaling the height
and width by wp and wv. The extracted image patches are
then rescaled to a common reference size (8 × 8). However,
normalization of LHOG is not necessary; our experimental
results show a similar performance between LHOG with and
without ST normalization, which indicates the robustness of
the descriptor to perspective and velocity variations.

E. Temporal ROI Count Regression

For each TROI, the count in each crowd segment is pre-
dicted using a regression function that directly maps between

Fig. 7. (a) TROI counts over time. (b) Recovered instantaneous count
estimates using integer programming.

the feature vector (input) and the number of people in the
crowd segment (output). Since pedestrian counts are discrete
non-negative integer values, we use BPR [3], which is an
extension of GPR [8], that directly learns a regression function
with non-negative integer outputs. BPR models the noisy
output of a counting function with a Poisson distribution
where the log-mean parameter is a linear function of the input
vector. A Gaussian prior is placed on the weights of the linear
function, and the model can be kernelized similar to GPR to
obtain nonlinear log-mean functions. We use the combination
of Radial Basis Function (RBF) and linear kernels, which
yielded the best performance compared with the single RBF
kernel, linear Bhattacharyya histogram intersection, and Chi-
squared-RBF kernels. Fig. 7(a) shows an example of the
predicted counts for the TROIs, along with the ground truth.

F. Instantaneous LOI Count Estimation

In the final stage, the instantaneous counts on the LOI are
recovered from the TROI counts using an integer programming
formulation. The i th TROI spans time i through i + L − 1,
where L is the width of the TROI. Let n̂i be the estimated
count in the i th TROI, and s j be the instantaneous count on
the LOI at time j . According to the instantaneous counts, the
TROI count ni is the sum of the instantaneous counts s j within
the temporal window (see Fig. 8)

ni = si + si+1 + · · · + si+L−1 =
L−1∑

k=0

si+k . (3)

Defining the vector of TROI counts n = [n1, . . . , nN]T and
s = [s1, . . . , sM]T , where N is the number of TROIs and M is
the number of video frames, we have

n = As (4)

where A ∈ {0, 1}N×M is an association matrix with entries

ai j =
{

1, j ≤ i < j + L

0, otherwise.
(5)

Both the count estimates n̂ = [n̂1, . . . , n̂N]T and A are known,
and hence finding s is a signal reconstruction problem, with
non-negative integer constraints on the counts s j . We next
consider this reconstruction problem using two error functions.

1960 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016

Fig. 8. Relationship between the TROI count ni and the instantaneous
count s j . The width of the TROI is L , and there are N TROIs.

1) Least Squares Reconstruction Error: We consider
recovering the instantaneous counts s using an integer
programming problem with a sum-squared reconstruction
error (L2-norm)

s∗ = arg min
s

‖As − n̂‖2 s.t. s j ∈ Z
+ ∀ j (6)

where Z
+ is the set of non-negative integers. We solve (6)

using the CPLEX optimization toolbox [21]. Fig. 7(b) presents
an example of the instantaneous counts recovered from the
TROI counts in Fig. 7(a) with integer programming. The
predicted instantaneous counts are close to the ground-truth
people crossing the line.

2) L1-Norm Reconstruction Error: The L2-norm used in
the least squares reconstruction error is known to be prone to
large estimation error if there are outliers. In the presence of
outliers (e.g., very noisy TROI count estimates), the L1-norm
can lead to a more robust estimator

s∗ = arg min
s

‖As − n̂‖1 = arg min
s

N∑

i=1

|ai s − n̂i |

s.t. s j ∈ Z
+ ∀ j (7)

where ai is the i th row of A. The L1 formulation in (7)
can be turned into a standard linear integer programming
problem (see Supplementary Material), which can be solved
with CPLEX [21].

G. Multiple Temporal Window Lengths
The LOI counting framework can be extended to han-

dle TROIs generated with multiple window lengths. Using
multiple window lengths can improve the accuracy for line
counting, by providing more count measurements over varying
window sizes at the same location, which helps to better
localize people in large crowds (see the example in Fig. 9).

Let L = {L1, . . . , L K } be a set of window lengths.
For each window length Lk , TROIs are extracted from the
temporal slice image. The number of people in each TROI
is predicted using count regression, resulting in the count
vector n̂(k). The association matrix A(k) for length Lk is

Fig. 9. Example of using multiple window lengths. (a) Large crowd
where one person crosses the line in each frame and the TROI counts for
window lengths 3 and 4. The instantaneous counts estimated from windows
of (b) length 4 or (c) length 3 have errors, while (d) using both windows
together yields the correct result.

then formed using (5). To incorporate the multiple windows
together, the count vectors and association matrices are con-
catenated together

A =
⎡

⎢⎣
A(1)

...

A(K)

⎤

⎥⎦, n̂ =
⎡

⎢⎣
n̂(1)

...

n̂(K)

⎤

⎥⎦ (8)

and then the instantaneous counts s are obtained by solving
the L2 or L1 optimization problems in (6) or (7).

IV. EXPERIMENTS ON SYNTHETIC DATA

In this section, we test the ability of our integer program-
ming framework to recover the instantaneous and cumulative
counts through experiments on synthetic data.

A. Experiment Setup

The procedure for generating synthetic line counts and
TROI counts is seen in Fig. 10. We first generate a synthetic
time series of instantaneous line counts. We set the length of
the time series to 1200 frames, and 40 random frames are
selected to place the instantaneous counts (1 person).4

From the ground-truth instantaneous counts, we then gen-
erate the ground-truth TROI counts ni , by summing the
instantaneous counts over a temporal sliding window of length
L = 238. Next, a noisy TROI count n̂i is produced by adding
rounded Wiener noise to each ground-truth TROI count,
n̂i = ni + Round(vi). The random variable vi is a zero-mean
Wiener process, which is simulated as vi = vi−1 + (ρ/

√
N)δi ,

where ρ is the scale factor and δi ∼ N (0, 1). In the
following experiments, we randomly select the scale factor
ρ ∼ N (1.5, 1) and generate a random noise sequence {vi }N

i=1
such that |EROI − 1/N

∑N
i=1 |Round(vi)|| ≤ 0.1, where

parameter EROI is the target TROI noise level. The resulting
noisy TROI count will have absolute error (AE) within 0.1
of EROI. The synthetic TROI counts produced using the
rounded Wiener noise tend to be higher or lower than the
ground truth for extended periods of time, which is similar

4This setting is similar to the University of Califor-
nia, San Diego (UCSD) data set [2], where there are
47 and 40 pedestrians in the test set for the right and left directions,
respectively. For the Lotus Hill Institute (LHI) data set [22], there are 44
pedestrians in the test set for the right direction.

MA AND CHAN: COUNTING PEOPLE CROSSING A LINE USING INTEGER PROGRAMMING AND LOCAL FEATURES 1961

Fig. 10. Generating synthetic counts. (a) Ground-truth instantaneous line counts. (b) Ground-truth TROI counts. (c) Synthetic TROI counts with noise
(EROI = 0.7).

to the errors produced by the actual TROI count prediction
[see Fig. 7(a)].

From the noisy TROI counts, the integer programming
method in Section III-F is used to recover an estimate of
the instantaneous line counts. The cumulative line count is
then the sum of the estimated instantaneous line count over
time. Let ĉa,b denote the estimated cumulative count between
frames a and b, i.e., ĉa,b = ∑b

t=a ŝt , where ŝt is the estimated
instantaneous count at time t .

The counting results are evaluated in three ways. First, the
cumulative counts from the start of the video are evaluated
with the AE between the estimated counts and the ground-
truth count, averaged over all frames

AE = 1

M

M∑

i=1

|c1,i − ĉ1,i | (9)

where ĉ1,i and c1,i are the estimated and true cumulative
counts between frame 1 and i , respectively, and M is the
number of frames. Since AE is based on the overall cumulative
counts starting from the beginning of the video, it may give
more penalty to errors that occur in the beginning of the
sequence than at the end. To mitigate this effect, we also
consider the windowed AE (WAE), which is the cumulative
counting error within a window of length T ,5 averaged over
all windows

WAE = 1

M − T + 1

M−T +1∑

i=1

|ci,i+T −1 − ĉi,i+T −1| (10)

where the cumulative counts are now over the temporal
window spanning frames i to i + T − 1. When the size of
the window is the same as the count sequence length T = M ,
then WAE is the error of the cumulative count in the last frame.

The performance of the instantaneous count prediction is
measured using an F-distance curve. The ground-truth instan-
taneous counts and the predictions are matched pairwise using
the Hungarian algorithm to find pairs with minimal temporal
distances. An F-distance curve is formed by sweeping a
threshold temporal distance d and recording the F-score for
the retrieval of pairwise matches with distance less than d .
In particular, the precision P is the fraction of predictions
that are paired within distance d , the recall R is the fraction
of ground-truth instantaneous counts that are paired within
distance d , and F = 2PR/(P + R). The curve represents

5T is distinct from the TROI window length L used in Section III-F.

Fig. 11. (a) AE and (b) WAE@100 versus the TROI noise level (EROI)
for L1 and L2 formulations on a synthetic data set. The solid lines show the
means along with one standard deviation (shaded).

Fig. 12. Average F-distance curve for the instantaneous counting results for
different levels of TROI noise (EROI).

the accuracy (F-score) of detecting a person crossing the line
within distance d of the ground-truth crossing. Average errors
are reported from 100 random synthetic count sequences.

B. Experimental Results

Fig. 11 plots the AE and the WAE (T = 100; denoted
by WAE@100) versus the ROI noise level EROI. This curve
describes the relationship between the TROI noise level and
the LOI cumulative counting error. For example, when the
error in TROI counts (EROI) is 2.1 people, then the AE for
the LOI cumulative count is 3.26 people, while the count
error is 1.18 people over windows of length 100 (WAE@100).
Empirically, the AE and WAE vary linearly with the TROI
noise level, and the L1 and L2 formulations have similar
errors. Also note that the cumulative count can be recovered
perfectly when no noise is present.

Fig. 12 shows the F-distance curves, which measure the
instantaneous counting accuracy, for different TROI noise
levels EROI. When the TROI noise level is EROI = 0.5,
the F-distance curve shows that our method has an F-score

1962 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016

Fig. 13. Comparison of (a) AE and (b) WAE@100 versus crowd density for
L1 and L2 formulations on a synthetic data set. The TROI noise level is set
to EROI = 0.5.

of 0.86 for correctly identifying pedestrians crossing the line
within d = 20 frames (around 2 s for a frame rate of
10 frames/s). The results suggest that integer programming
is a possible way to recover LOI counts from TROI counts
even from very noisy input TROI counts.

In another experiment, we fix the TROI noise level and
vary the crowd density by changing the total number of
ground-truth people in a synthetic sequence of length 1200.
We set the TROI noise level to EROI = 0.7. For a given
crowd density, 100 synthetic sequences are generated and
the L1-norm and L2-norm reconstruction errors are used to
recover the instantaneous and cumulative counts. The AE and
WAE@100 for different crowd densities are plotted in Fig. 13.
In general, as the crowd density increases, the counting error
using integer programming also increases. When the crowd
density is relatively lower (less than 17 people per 100 frames),
the AE of L2-norm is smaller than L1, while WAE is com-
parable. However, in crowded scenes (more than 25 people
per 100 frames), L1-norm achieves better AE and WAE than
L2-norm. This is mainly due to overfitting behavior of the
L2-norm when there are outliers. The overfitting tends to
happen more often when the crowd size is large, since there
are more instantaneous counts that can be moved around to
reduce the larger residuals between neighboring TROIs.

V. EXPERIMENTS ON CROWD COUNTING

In this section, we present experiments using the proposed
LOI counting algorithm on three crowd data sets.

A. Experiment on UCSD and LHI Data Sets

We first present experiments on two crowd video data sets,
the UCSD people counting data set [2] and the LHI pedestrian
data set [22]. An example frame from the UCSD data set is
shown in Fig. 14(a). The video is captured by a stationary
digital camcorder with an angled viewpoint over a walkway
at UCSD. The data set contains 2000 video frames (frame size
of 238 × 158 at 10 frames/s). The LHI data set contains three
types of video, categorized by the camera tilt angle. In our
experiments, we use the 3-3 video with a 40° camera tilt
angle, which is the most challenging video in LHI due to the
large amounts of occlusion. An example frame is displayed
in Fig. 14(b), and the frame size is 352 × 288.

1) Experiment Setup: For UCSD, we follow the experimen-
tal protocol in [2], where the training set consists of 800 frames
(frames 600 to 1399), and the remaining 1200 frames are
used as the test set for validation. For LHI, the training set

Fig. 14. Examples of input video with LOI for the (a) UCSD data set and
(b) video 3-3 of the LHI data set.

is the first 800 frames and the following 1200 frames are
the test set. The LOI positions are also shown in Fig. 14.
The ground-truth time that each person crossed the LOI was
labeled manually. For UCSD, the crowd was separated into
two components moving in opposite directions on the walk-
way (right and left), using the motion segmentation method
described in Section III-A. For LHI, the crowd is only moving
in the right direction. We estimate the instantaneous and
cumulative counts on the LOI using our proposed frame-
work with temporal window length L = 238. We also
tested multiple windows, L = {50, 100, 150, 200}. We use
global low-level [2], [3] or LHOG features, with and without
ST normalization. The regression model is learned from the
training set (UCSD or LHI) and predictions made on the
corresponding test set. The hyperparameters of the regression
model are estimated automatically by maximizing the marginal
likelihood of the training set. All other parameters are fixed
for all videos. For comparison, we also predict the cumulative
counts using the flow mosaicking [1]. Both methods are run
on the same motion segmentation and optical flow images.

We also compared with KLT tracker [23] as a baseline for
line counting using standard visual tracking algorithms. The
KLT trajectories are locally clustered in each frame, and the
number of people crossing the LOI is calculated as the number
of trajectories intersecting a bounding box around the line.
Note that the KLT tracker does not require training, while our
algorithm needs scene-specific training.

The counting results are evaluated with AE (9) and
WAE (10). For flow mosaicking, which is blob based and
inherently cannot produce smooth cumulative counts, we also
consider a blob ground truth that updates only when the
predicted count changes, i.e., when a blob is counted. The
performance of the instantaneous count prediction is measured
using an F-distance curve, as introduced in Section IV-A.

2) Counting Results: The counting results on UCSD and
LHI are presented in Table II, with the cumulative and
instantaneous counts plotted in Fig. 15.6 First comparing the
different feature sets on the UCSD data set, the LHOG feature
achieves comparable results with the global low-level features
(AE 0.604 versus 0.534 and WAE@100 0.723 versus 0.793)
for the left direction. In the right direction, LHOG obtains
significantly less error than the global features (AE 0.6883
versus 1.5067 and WAE@100 0.511 versus 0.703). Since
the right direction contains larger crowds, this suggests that
LHOG is better at counting the partially occluded people.
Furthermore, the counting error with LHOG only increases

6Videos of the line-counting results on UCSD and LHI data sets can be
found at http://visal.cs.cityu.edu.hk/research/linecount-demo/.

MA AND CHAN: COUNTING PEOPLE CROSSING A LINE USING INTEGER PROGRAMMING AND LOCAL FEATURES 1963

TABLE II

CUMULATIVE COUNTING RESULTS ON UCSD AND LHI DATA SETS. FLOW MOSAICKING IS DENOTED BY FlMsk

Fig. 15. Counting results on UCSD and LHI data sets using LHOG and integer programming (top) and flow mosaicking (bottom). (a) Cumulative counts.
(b) Instantaneous counts for LHOG or blob counts for flow mosaicking.

slightly when ST normalization is not used (increase of <0.03
for AE or WAE on UCSD dataset and <0.005 on LHI
dataset). On the other hand, the error for the global features
increases significantly, e.g., for the right direction, from 1.507
to 2.416 for AE and from 0.703 to 1.253 for WAE@100. This
demonstrates that LHOG is more robust to perspective and
velocity effects than the global features. Concatenating the
LHOG BoW and global features does not yield to improved
performance, possibly due to overfitting or incompatibility
of the features. Finally, using multiple windows (denoted by
LHOG-mix) can improve the WAE@100 compared with using
just a single window, but at the expense of increased AE.

Our LOI counting framework using LHOG has lower AE
than the flow-mosaicking method (for both the ground truth

and blob ground truth). The flow-mosaicking method has a
particularly large error (AE 8.240 and WAE@100 2.588) in
the UCSD-right direction. In crowded scenes with large blobs,
the flow mosaicking method tends to have high error, which is
also shown in the count plots for UCSD-right and LHI-right
[see Fig. 15 (bottom)]. Overall, the KLT tracker has lower
WAE@100 than the flow-mosaicking one on the UCSD/LHI
data sets (average WAE@100 of 1.15 versus 1.19), but also
higher AE. KLT-tracker can perform reasonably well in these
videos because the pedestrians are large enough for the tracker
to find stable features. However, the performance of KLT is
still worse than that of our method (WAE of 0.69).

Fig. 16(a) presents the WAE for various temporal window
lengths, and Fig. 16(b) shows the corresponding average

1964 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016

Fig. 16. (a) WAE versus WAE window length T. (b) Average count versus
WAE window length T.

Fig. 17. F-distance curves on UCSD and LHI data sets.

number of ground-truth people. For our method, the WAE is
relatively stable regardless of the length of the window eval-
uated, whereas that of the flow-mosaicking method increases
as the window length T and the number of people increases.

The recovered instantaneous counts are presented in Fig. 2,
and the accuracy is evaluated using the F-distance curves
in Fig. 17. For correctly identifying pedestrians crossing the
line within 2 s, our method has F-scores of 0.82, 0.84,
and 0.90 on UCSD-right, UCSD-left, and LHI, respectively.
For comparison, the flow-mosaicking method has F-scores of
0.48, 0.73, and 0.76. Our method can generate more accurate
instantaneous counts than the flow-mosaicking method, which
is a blob-centric method.

B. Experiments on Grand Central Data Set

We next present counting experiments on the Grand Central
data set from [16]. The video is collected from the inside
of the Grand Central Station in New York (see Fig. 18).
Compared with the previous outdoor videos (UCSD and LHI),
this video is more challenging, since the reflection on the floor
and the shadows of people introduce noise that affects the
segmentation and introduces noise in the features.

1) Experiment Setup: We define eight LOIs, as shown
in Fig. 18, which are labeled L1 to L8 and cover the
entrances and exits of the scene. We manually label the ground
truth of the first 8000 frames of the video (about 5.3 min
at 25 frames/s). The training set for each line consists of
1000 frames, with the other 7000 frames for testing. Since
the temporal distribution of people is different for each line,
the training sets for each line are selected so that they contain
a range of crowd sizes (see Table III). The total number

Fig. 18. Frame from the Grand Central data set. The yellow lines represent
the LOIs of our algorithm, while the blue rectangle boxes represent the
counting areas for the KLT tracker baseline.

TABLE III

TRAINING SET SETTINGS AND NO. OF PEOPLE IN THE GRAND CENTRAL

DATASET

of people crossing each LOI and the number of people in
training and test data sets are also shown in Table III. The
most crowded line is L4, where the right direction contains
543 pedestrians. Since L7-left has only one pedestrian in its
training set, the training set of L8 is used as the training set
for L7.

For estimating the instantaneous count, we consider
one window length, L = 238 denoted by LHOG-238, and
multiple window lengths. For multiple windows (denoted by
LHOG-mix), we use sizes L = {200, 220, 240, 260} for
L1 and L2 and L = {50, 100, 150, 200} for L3–L8. L1 and L2
use larger windows than L3–L8 because the people are moving
slowly across the line, resulting in stretched bodies in the
temporal slice image. Finally, we also estimate the count using
the KLT tracking results provided with the Grand Central data
set [16].

2) Experimental Results: The cumulative counting results
are shown in Table IV, and three representative lines are
plotted in Fig. 19 (see the Supplementary Material for all
plots). Using multiple windows lengths produced more accu-
rate counts than using a single window length in 14 out of
16 line directions according to WAE@100, and had overall
better accuracy averaged over all lines (average WAE@100 of
0.78 versus 0.92).

Counting with KLT has higher average WAE@100 than
LHOG-mix (1.47 versus 0.78). The KLT tracker has difficulty
tracking the people in lines L1, L2, L7, and L8, because they
are far away from the camera, and the people tend to be small

MA AND CHAN: COUNTING PEOPLE CROSSING A LINE USING INTEGER PROGRAMMING AND LOCAL FEATURES 1965

Fig. 19. Line-counting results using LHOG and KLT on the Grand Central data set (lines L2, L3, and L8).

and partially occluded. KLT also has difficulty on L4-right,
which is the most crowded line, exhibiting a much higher
WAE@100 of 4.0 than LHOG-mix (1.49). Our algorithm also
has lower average WAE than the flow-mosaicking method
(0.78 versus 1.26). Note that on Grand Central, the flow-
mosaicking method performs better than the KLT tracker, most
likely because the pedestrians appear smaller on this data set,
resulting in more trajectories missed by KLT.

One failure case of LHOG is on L6-left. The temporal
distribution of the pedestrian is extremely unbalanced. As a
result, the TROI counting function makes more errors, result-
ing in larger errors in the instantaneous and cumulative count
predictions, compared with KLT (AE of 29.1 versus 17.6).

Finally, Fig. 20 plots the F-distance curves averaged over
all lines and directions on Grand Central. For our method, the
average F-score for detecting people crossing a line within 2 s
(50 frames; 25 frames/s) is 0.77, compared with 0.40 for
KLT and 0.71 for flow-mosaicking.

C. Counting Results Using People Detection Methods

We next test people detection methods for line counting on
UCSD and LHI.

1) Setup: We use two people detectors, HOG [13] and
DPM [15], to detect and count people in the temporal slice
image. The standard detection framework applies a detector
with a fixed-size image input to an image pyramid in order
to detect people at multiple scales. To adapt the detection
framework to work on the temporal slice image, we modify

Fig. 20. F-distance curve averaged over all lines on the Grand Central
data set.

the image pyramid to separately scale the height and the
width of the temporal image. The image height is scaled
to handle changes in a person’s height due to perspective,
while the image width (i.e., the temporal dimension) is scaled
to handle changes in a person’s width due to its velocity
(see Fig. 5). In addition, we use vertical LOIs (Fig. 21) so
that people in the temporal slice image are not distorted too
much. Both detectors are trained on the temporal slice images
of UCSD and LHI. The training samples are labeled from
the temporal slice image after ST normalization. Finally, the
threshold of the detector is learned on the training set, while
the counting results are evaluated on the test set.

In addition to detection on the temporal image, we also
perform standard people detection in the spatial image
around the LOI and apply nonmaximum suppression to

1966 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016

TABLE IV

CUMULATIVE COUNTING RESULTS ON THE GRAND CENTRAL DATA SET

Fig. 21. Line poses for people detection for (a) UCSD and (b) LHI data
sets.

obtain the count of people crossing the line (denoted by
Histogram of Oriented Gradients (HOG) features with spatial
normalization or Deformable Parts Model with spatial nor-
malization (DPM-S)). We also combine the detection maps
from the temporal and spatial images to obtain a line count
(Histogram of Oriented Gradients (HOG) features with spatio-
temporal normalization (HOG-ST) or Deformable Parts Model
with spatio-temporal normalization (DPM-ST)).

The x-coordinate of the center of a detection box indicates
when a person has passed the LOI and these are collected to
form the instantaneous count. To improve the detection results,
we use two postprocessing constraints to remove false positive
errors. First, we only keep detections whose centers are in
the motion segment, in order to remove erroneous detections
caused by background clutter. Second, we remove detections
that do not fit the perspective geometry of the scene, i.e., those
that suggest a person that is too tall or too wide for the

given location. Using the crowd motion segments, we obtain
the line counts for each direction: right and left and scene
(both right and left).

2) Results: The cumulative counting results are presented
in Table V (see the Supplementary Material for detection
and count plots). On these scenes, DPM obtains a lower
cumulative counting error than HOG; the deformable model is
better able to handle the distortion of a person’s appearance in
the temporal slice image. However, the counting-by-detection
results have a higher error rate compared with our LHOG
regression model.

Deformable Parts Model with temporal normaliza-
tion (DPM-T) is successful in detecting most people walking
alone, while moving at normal speeds (around one pixel
per frame). However, the detector has difficulty when the
person is moving too fast or too slowly. When a person is
moving slowly, its appearance in the temporal slice image
will be stretched due to the slow speed and blurred due to
the changing pose. When a person is moving too quickly,
the appearance will be thin and low quality, because the line
sampling process skips slices of the person. Therefore, the
appearance of each pedestrian in temporal slice image is not
stable, compared with its appearance in a normal image. The
two detectors also have difficulty on people walking together
in a group, which is due to both partial occlusion between
pedestrians and the distortion due to the line sampling
process.

Finally, the overall detection results of DPM-S are better
than those of DPM-T. However, DPM-S still has a higher error
than LHOG regression, except on UCSD Scene where they
get similar performance in terms of WAE@100. On average,
the combined detection (DPM-ST) has a larger error than
only detection on the image. Table VI shows the processing
time for the line-counting algorithms on UCSD and LHI.
Our framework has a processing time comparable with that
of flow-mosaicking (both implemented in MATLAB), and is
faster than the people detectors (implemented in C).

VI. EXPERIMENTS ON FRAMEWORK COMPONENTS

In this section, we conduct further in-depth experiments on
our proposed line-counting framework.

A. Comparing Framework Components for Line Counting

The experiment results in Section V-A compare our method
and the flow-mosaicking [1] at the framework level. These two
frameworks use different feature sets, line-sampling and nor-
malization methods, and regression methods. For feature sets,
our framework uses LHOG features or 30 global features [2],
while flow-mosaicking uses area and edge-length features [1].
To form the temporal slice image, our framework uses fixed-
width line sampling in conjunction with ST normalization to
adjust for people moving at different speeds. In contrast, the
flow-mosaicking uses a variable-width line, with width that
adapts to the speed of the blob segment so that people have
similar sizes in the temporal slice image; spatial normalization
is used to handle perspective. Finally, our framework uses
BPR for counting in the TROIs and integer programming to

MA AND CHAN: COUNTING PEOPLE CROSSING A LINE USING INTEGER PROGRAMMING AND LOCAL FEATURES 1967

TABLE V

CUMULATIVE COUNTING RESULTS USING PEOPLE DETECTION ON UCSD AND LHI.
S AND T DENOTE DETECTION IN THE SPATIAL OR TEMPORAL IMAGE

TABLE VI

PROCESSING TIME OF LINE-COUNTING ALGORITHMS

ON UCSD AND LHI

recover the instantaneous counts (denoted by BPR + IP). The
flow-mosaicking counts people in each blob using quadratic
regression.

Here, we compare the performance of individual
components within the same counting framework, i.e., one
component is changed while the remaining two are fixed.
The counting results on UCSD are presented in Table VII.
First, for the same feature set (either global, area/edge,
or LHOG) and BPR + IP counting, our ST normalization
method with fixed-width line sampling is more accurate than
using variable-width line sampling (i.e., flow-mosaicking).
Because the variable line-width is based on the average speed
of the blob, it may distort the people when there are several
people moving at different speeds. On the other hand, our
ST normalization can better handle this case [see Fig. 6(b)]
by effectively applying per-person normalization. Second, for
BPR + IP, the global and LHOG features perform better than
the area/edge features. Third, using the same feature set and
variable-width line sampling, our BPR-IP counting function
is more accurate than blob-level regression. Note that we did
not test the LHOG features with blob-level regression, since
for small blobs, there are too few LHOG patches to build
a useful descriptor. In summary, each of the components in
our framework individually contributes to the improvement
in counting over the one in [1].

B. Comparison of Instantaneous Count Methods

We compare different formulations of recovering the
instantaneous counts. First, we investigate the effect of using
different output domains when solving the least squares
reconstruction of the instantaneous counts (6). In particu-
lar, we consider using the output domains of real number
(i.e., ordinary least squares), non-negative real numbers, and
non-negative integers (integer programming). The counting
results of the three approaches are presented in Table VIII
(using LHOG features without ST normalization). The integer
programming method yields the best result. In practice, for

the instantaneous count, we also tend to prefer a non-negative
integer value rather than a real value.

We next consider different norms for the reconstruction
error, in particular, the L2-norm in (6) and the L1-norm
in (7). The test results on UCSD and LHI are presented
in Table IX. Averaged over the three data sets, using the
L2-norm yields lower AE and WAE@100 than L1-norm. Note
that these results are consistent with the results of the synthetic
experiments in Fig. 13, since the UCSD and LHI data sets
have less than 50 people in the test set. Finally, the average
processing time (i7 CPU, 3.40 GHz, 4G memory) needed for
the L1 reconstruction (0.91 ms/frame)7 is about 40 times faster
than reconstruction using L2. Hence, with a small loss in
performance, L1 reconstruction can be used to decrease the
runtime of the line-counting framework.

C. Comparison of Window Lengths

To investigate the performance of multiple temporal win-
dows, we test the performance of using single windows of
various lengths and multiple windows consisting of different
combinations. Fig. 22 shows the results on L1 and L3 of Grand
Central. Compared with only using a single length-50 window,
the mixture of multiple windows improves the performance
(increases of 9.30%, 11.51%, and 13.81% for sets {50, 100},
{50, 100, 150}, and {50, 100, 150, 200}, respectively).

D. Training Set Size

To analyze the influence of the training set size, we trained
the regression model on UCSD and LHI with smaller subsets
{100, 200, 400} of the original training set, while keeping
the test set fixed. Fig. 23 shows the results for different
training set sizes. When using half of the original training
set, the errors increase by 13.8%/14.7%/1.23% for UCSD-left/
UCSD-right/LHI-right. However, even only using 100 frames
for training, our results (1.0645/0.9546/0.8792) are still better
than the flow-mosaicking and KLT.

E. LHOG Without Spatiotemporal Normalization

Next, we investigate why LHOG can achieve good results
without using ST normalization. Fig. 24 shows a plot of
the LHOG codewords (without ST normalization) versus
the speeds of image patches assigned to those codewords.

7The proposed method works in batch mode on a chunk of video
(e.g., 1000 frames). Here, we report the average processing time over all
frames.

1968 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 10, OCTOBER 2016

TABLE VII

COUNTING RESULTS ON UCSD FOR DIFFERENT COMBINATIONS OF FEATURES, LINE SAMPLING, NORMALIZATION, AND REGRESSION METHODS

TABLE VIII

COUNTING RESULTS ON THE UCSD DATA SET WHEN USING DIFFERENT

OUTPUT DOMAINS FOR INSTANTANEOUS COUNTS

TABLE IX

CUMULATIVE COUNTING RESULTS USING L2-NORM AND L1-NORM

ERRORS FOR RECONSTRUCTING INSTANTANEOUS COUNTS

Fig. 22. Average WAE@100 of the left and right directions of L1 and L3
on the Grand Central data set.

Fig. 23. Counting results on UCSD and LHI versus training set sizes.

Codewords tend to specialize on the appearance of people
moving at different speeds. Codewords for slow moving
people (e.g., Codeword 1) consist of horizontal edges, as the
appearance of a slow-moving pedestrian contains elongated
horizontal edges due to sample slices being repeated.

Fig. 24. LHOG codebook learned without ST normalization. The codeword
(x-axis) versus the optical flow speed of image patches assigned to that
codeword (y-axis). The red circle and the red bar show the average and
standard deviation of the speed, respectively. The codeword visualizations
are on top.

In contrast, codewords for fast-moving people
(e.g., Codeword 40) consist of two vertical edges, which
corresponds to the thin appearance of a fast-moving person
(see Fig. 5). Hence, the LHOG BoW descriptor without
ST normalization is capable of capturing variations in the
appearance due to the person’s speed, from which a reliable
counting function can be learned.

VII. CONCLUSION

In this paper, we have presented a novel line-counting
framework, which is based on using integer programming
to recover the instantaneous counts on the LOI from TROI
counts of a sliding window over the temporal slice image.
We validate our framework on three data sets. The results
show that compared with global low-level features, the pro-
posed LHOG feature is more robust to the perspective and
object velocity variations and performs equally well without
using ST normalization. Moreover, compared with blob-centric
methods (e.g., flow-mosaicking), our method can generate
more accurate instantaneous and cumulative counts, especially
in crowded scenes. Further experiments showed that the com-
ponents in our line-counting framework, in particular fixed-
width line sampling with ST normalization, instantaneous
counting by integer programming, and LHOG features, each
contribute to improving the line-counting accuracy.

There are four potential improvements to be considered
for future work. First, the appearance of pedestrians in the
temporal slice image becomes distorted during line sampling
when using diagonal or horizontal lines. Hence, the features
could be made more robust by applying geometric normal-
ization to counteract this distortion. Second, the instantaneous

MA AND CHAN: COUNTING PEOPLE CROSSING A LINE USING INTEGER PROGRAMMING AND LOCAL FEATURES 1969

count reconstruction runs in batch mode on all TROI counts.
For online estimation, the LOI counts could be obtained by
appending the new frame to the previous frames and running
the batch method, but this would be inefficient. Efficient online
updating of the reconstruction is another topic for future work.
Third, devising an automatic method for selecting the best
combination of TROI window lengths is an interesting topic
for future work. Finally, training of the proposed framework is
scene specific since the LHOG and global features are sensitive
to the camera viewpoint and LOI orientation. Future work will
consider how to transform the LHOG feature when the camera
viewpoint changes and how to apply scene transfer algorithms
such as those in [10], [12], and [25].

ACKNOWLEDGMENT

The authors would like to thank Y. Cong for the videos
from the LHI data set [22].

REFERENCES

[1] Y. Cong, H. Gong, S.-C. Zhu, and Y. Tang, “Flow mosaicking: Real-
time pedestrian counting without scene-specific learning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 1093–1100.

[2] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos, “Privacy preserving
crowd monitoring: Counting people without people models or tracking,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2008,
pp. 1–7.

[3] A. B. Chan and N. Vasconcelos, “Counting people with low-level
features and Bayesian regression,” IEEE Trans. Image Process., vol. 21,
no. 4, pp. 2160–2177, Apr. 2012.

[4] A. B. Chan and N. Vasconcelos, “Bayesian Poisson regression for
crowd counting,” in Proc. IEEE 12th Int. Conf. Comput. Vis. (ICCV),
Sep./Oct. 2009, pp. 545–551.

[5] D. Kong, D. Gray, and H. Tao, “A viewpoint invariant approach for
crowd counting,” in Proc. 18th Int. Conf. Pattern Recognit. (ICPR),
2006, pp. 1187–1190.

[6] D. Ryan, S. Denman, C. Fookes, and S. Sridharan, “Crowd counting
using multiple local features,” in Proc. Digit. Image Comput., Techn.
Appl., Dec. 2009, pp. 81–88.

[7] F. Lv, T. Zhao, and R. Nevatia, “Camera calibration from video of a
walking human,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 9,
pp. 1513–1518, Sep. 2006.

[8] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[9] K. Chen, S. Gong, T. Xiang, and C. C. Loy, “Cumulative attribute space
for age and crowd density estimation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2013, pp. 2467–2474.

[10] C. C. Loy, S. Gong, and T. Xiang, “From semi-supervised to transfer
counting of crowds,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2013, pp. 2256–2263.

[11] V. Lempitsky and A. Zisserman, “Learning to count objects in images,”
in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1324–1332.

[12] J. Wang, W. Fu, J. Liu, and H. Lu, “Spatiotemporal group context for
pedestrian counting,” IEEE Trans. Circuits Syst. Video Technol., vol. 24,
no. 9, pp. 1620–1630, Sep. 2014.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1. Jun. 2005, pp. 886–893.

[14] B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans
in a single image by Bayesian combination of edgelet part detectors,”
in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV), vol. 1. Oct. 2005,
pp. 90–97.

[15] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2008, pp. 1–8.

[16] B. Zhou, X. Wang, and X. Tang, “Understanding collective crowd
behaviors: Learning a mixture model of dynamic pedestrian-agents,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012,
pp. 2871–2878.

[17] Z. Ma and A. B. Chan, “Crossing the line: Crowd counting by integer
programming with local features,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2013, pp. 2539–2546.

[18] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and segmenting
video with mixtures of dynamic textures,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 5, pp. 909–926, May 2008.

[19] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[20] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methods,”
Int. J. Comput. Vis., vol. 61, no. 3, pp. 211–231, 2005.

[21] (2013). IBM ILOG CPLEX Optimizer. [Online]. Available: http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/

[22] B. Yao, X. Yang, and S.-C. Zhu, “Introduction to a large-scale general
purpose ground truth database: Methodology, annotation tool and bench-
marks,” in Proc. 6th Int. Conf. Energy Minimization Methods Comput.
Vis. Pattern Recognit. (EMMCVPR), 2007, pp. 169–183.

[23] C. Tomasi and T. Kanade, “Detection and tracking of point features,”
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-91-
132, Apr. 1991.

[24] N. Tang, Y.-Y. Lin, M.-F. Weng, and H.-Y. M. Liao, “Cross-camera
knowledge transfer for multiview people counting,” IEEE Trans. Image
Process., vol. 24, no. 1, pp. 80–93, Jan. 2015.

[25] C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd counting
via deep convolutional neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 833–841.

Zheng Ma (M’16) received the B.S. and M.S.
degrees from Xi’an Jiaotong University, Xi’an,
China, in 2007 and 2011, respectively. He is
currently pursuing the Ph.D. degree with the City
University of Hong Kong, Hong Kong.

His current research interests include computer
vision, crowd counting, and object detection.

Antoni B. Chan (SM’15) received the B.S. and
M.Eng. degrees in electrical engineering from
Cornell University, Ithaca, NY, USA, in 2000
and 2001, respectively, and the Ph.D. degree in elec-
trical and computer engineering from the University
of California at San Diego (UCSD), La Jolla, CA,
USA, in 2008.

He was a Visiting Scientist with the Vision and
Image Analysis Laboratory, Cornell University, from
2001 to 2003, and a Post-Doctoral Researcher with
the Statistical Visual Computing Laboratory, UCSD,

in 2009. In 2009, he joined the Department of Computer Science, City
University of Hong Kong, Hong Kong, where he is currently an Associate
Professor. His current research interests include computer vision, machine
learning, pattern recognition, and music analysis.

Dr. Chan received the National Science Foundation Integrative Graduate
Education and Research Training Fellowship from 2006 to 2008, and the
Early Career Award from the Research Grants Council of the Hong Kong
Special Administrative Region, China, in 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

